skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roscioli, Joseph_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Ammonia (NH3) from animal feeding operations (AFOs) is an important source of reactive nitrogen in the US, but despite its ramifications for air quality and ecosystem health, its near‐source evolution remains understudied. To this end, Phase I of the Transport and Transformation of Ammonia (TRANS2Am) field campaign was conducted in the northeastern Colorado Front Range in summer 2021 and characterized atmospheric composition downwind of AFOs during 10 research flights. Airborne measurements of NH3, nitric acid (HNO3), and a suite of water‐soluble aerosol species collected onboard the University of Wyoming King Air research aircraft present an opportunity to investigate the sensitivity of particulate matter (PM) formation to AFO emissions. We couple the observations with thermodynamic modeling to predict the seasonality of ammonium nitrate (NH4NO3) formation. We find that during TRANS2Am northeastern Colorado is consistently in the NH3‐rich and HNO3‐limited NH4NO3formation regime. Further investigation using the Extended Aerosol Inorganics Model reveals that summertime temperatures (mean: 23°C) of northeastern Colorado, especially near the surface, inhibit NH4NO3formation despite high NH3concentrations (max: ≤114 ppbv). Finally, we model spring/autumn and winter conditions to explore the seasonality of NH4NO3formation and find that cooler temperatures could support substantially more NH4NO3formation. Whereas NH4NO3only exceeds 1 μg m−3∼10% of the time in summer, modeled NH4NO3would exceed 1 μg m−361% (88%) of the time in spring/autumn (winter), with a 10°C (20°C) temperature decrease relative to the campaign. 
    more » « less
  2. Abstract Emission factors (EFs) are crucial in understanding the effects of wildfire emissions on air quality. We examined the variability of EFs of three wildfires (Nethker, Castle, and 204 Cow) during the 2019 Western US wildfire season using the Aerodyne Mobile Laboratory (AML) and compared them to previous studies. The AML sampling captured the high degree of variability present in wildfires, and we report results for a range of combustion conditions that is more extensive than previous field and laboratory studies. For instance, we captured emissions from freshly started flaming fuels and we report rare EF measurements at very high modified combustion efficiencies (MCEs); MCEs >0.9. Differences in emissions between AML‐observed wildfires were attributed to burning state/MCE rather than fuel type. A comparison of EFs versus MCE was made and linear fits were compared to previous observations to reveal important differences that incorporate these high MCEs. For some species, there remains an EF dependence on MCE at these high values, while others reach a minimum value and exhibit either no or a weak dependence above it. EF differences were found for many of the studied compounds when comparing ground‐based and airborne observations, with generally greater airborne EFs possibly due to photochemical oxidation. The largest differences were from monoterpenes and acetaldehyde. Comparisons were made between AML‐observed wildfires, aircraft observations, and the values in literature for EFs and emission ratios, with mixed agreement due to the high degree of variability caused by differences in MCE. Differences in MCE drove the diurnal EF differences. 
    more » « less